X-ray Measurement of the Root-Mean-Square Displacement of Atoms in Zinc Single Crystals. A Case of High Anisotropic Extinction

By Elisabeth Rossmanith
Mineralogisch-Petrographisches Institut, Universität Hamburg, Grindelallee 48, 2000 Hamburg 13, Federal Republic of Germany

(Received 13 October 1976; accepted 15 February 1977)

Abstract

The thermal parameters of Zn have been refined by the use of Bragg reflexions measured with Mo $K \alpha$ and $\mathrm{Cu} K \alpha$ radiation for one temperature only. Several models of the anisotropic extinction correction have been examined. It is shown that the use of the extinction correction strongly influences the values of the thermal parameters. These parameters are however only slightly affected by the choice of extinction correction model. The programs LINEX 74 and $O R X F L S 3$ were used for refinement, the latter in a version modified by the author. The best fit was obtained by using the LINEX 74 type I model with a Lorentzian distribution of the mosaic spread and the Thornley-Nelmes model for the ellipsoid of the anisotropic mosaic spread. The result for the root-mean-square displacement was $u_{a}=0.098 \pm 0.001 \AA$ (Mo $K \alpha$ radiation), $u_{a}=0.102 \pm 0.006 \AA$ ($\mathrm{Cu} K \alpha$ radiation) in the a direction of the lattice and $u_{c}=0.161 \pm$ $0.004 \AA$ (for both radiations) in the c direction. These results are in good agreement with those of Skelton \& Katz [Phys. Rev. (1968), 171, 801-808], measured in a temperature range from 4.85 to 600 K .

Introduction

During the last decade the validity of the temperature factors $\beta_{i j}$ calculated from X-ray Bragg intensity measurements on single crystals with least-squares routines has been questioned. To obtain an answer about the quality of these temperature factors two projects were started: (a) The American Crystallographic Association asked seven institutes to measure the highly symmetric CaF_{2} single crystal. Each institute in turn received the same CaF_{2} crystal for measurement (Abrahams et al., 1967). (b) The International Union of Crystallography asked 16 different institutes to measure one of 16 different D-(+ -tartaric acid single crystals (Abrahams, Hamilton \& Mathieson, 1970; Hamilton \& Abrahams, 1970). These two projects and the results of comparing measured and calculated temperature factors of Ni ($B_{\mathrm{X} \text {-ray }}=0.37 \AA^{2}$, $\left.B_{\text {neutron }}=0.43 \AA^{2}, B_{\text {theor. }}=0.38 \AA^{2}\right)$ and $A 1\left(B_{\text {X-ray }}=\right.$ $\left.0.85 \AA^{2}, B_{\text {neutron }}=0.89 \AA^{2}, B_{\text {theor. }}=0.87 \AA^{2}\right)($ Willis $\&$ Pryor, 1975, and references cited therein) leads to the following conclusion: In the case of low symmetrical single crystals built up of light atoms [project (b)], there is striking disagreement for the $\beta_{i j}$ between the results given by different authors. In the worst case in project (b) the temperature factors disagree by a factor of 10 . In the case of highly symmetrical substances [project (a) and values for Ni and AI], built up of heavy atoms in special positions, for which the six temperature factors reduce to one or two independent parameters, there is satisfactory agreement between different measurements and between measured and calculated temperature factors. These results encouraged the author to estimate the temperature
factors of Zn using the intensities measured in Bragg positions of a Zn single crystal for one temperature only.

Temperature factors calculated by least-squares analysis are strongly dependent on whether the absorption correction, the extinction correction and the correction for TDS are properly applied. Ignoring one, two or all of these corrections leads to an underestimate of temperature factors. In this investigation absorption correction was used and the extinction was studied extensively; the TDS correction was, however, not made.

Previous work on $\mathbf{Z n}$ root-mean-square displacement

Previous work is collated in Table 1. With the help of calculated values for u_{a} and u_{c} Brindley (1936) corrected the measured form factor of the Zn atom and compared the result with calculated form-factor values. The comparison led him to the conclusion that his calculated values for u_{a} and u_{c} must be too small. In subsequent papers, by Jauncey \& Bruce (1936) and Wollan \& Harvey (1937), larger values for u_{a} and u_{c} were estimated (Table 1). The relatively small values found by Ryba (1960) may be because he used a large single crystal $(10 \times 25 \times 1.5 \mathrm{~mm})$ and did not correct his intensities for extinction, particularly as the mosaic structure (which is irreversibly temperature dependent) governs the extinction correction.

Experimental

A sphere of Zn single crystal $(99.9999 \% \mathrm{Zn}$), obtained by the extrusion of molten zinc through a narrow oil-

Table 1. Previous work on the root-mean-square displacement of Zn
u_{a} and u_{c} are the mean atomic displacements in directions a and \mathbf{c} of the crystal lattice.

Author	Method to estimate u_{a} and u_{c}	$\stackrel{u_{a}(\AA)}{T=293{ }^{\circ}{ }^{\circ} \mathrm{K}}{ }_{c}(\AA)$	
Zener (1936)	Calculated	0.0636	0.0853
Brindley (1936)	Calculated	0.0791	0.1265
Jauncey \& Bruce (1936)	From measurements of diffuse scattering on Zn single crystals	0.093	$0 \cdot 172$
Wollan \& Harvey (1937)	From measurements of Bragg intensities on Zn powder sample for two temperatures	0.0913	$0 \cdot 153$
Ryba (1960)	From measurements of 400 and 006 reflexions on Zn single crystal in the temperature range $13^{\circ}-400^{\circ} \mathrm{C}$	0.077	$0 \cdot 128$
$\underset{(1968)}{\text { Skelton \& Katz }}$	From measurements of $004,006,008,300,400$, 600 and 210 reflexions on Zn single crystals in the temperature range $4 \cdot 85^{\circ}-600^{\circ} \mathrm{K}$	0.106	$0 \cdot 161$

encased tube was supplied by Guse (1971). Oil and molten zinc are contained within a large glass column which has a temperature gradient from the top to the bottom. The extruded zinc solidifies into spherical droplets as they fall through the oil. Most of the spheres are single crystals, although under some conditions polycrystalline phases also develop. The mean radius $R_{s}=0.00680 \pm 0.00018 \mathrm{~cm}$ of the Zn sample was obtained by measuring it ten times in various orientations. The values of $\mu_{0} R_{s}$ obtained for Mo $K \alpha$ and $\mathrm{CuK} \mathrm{\alpha}$ for this sphere are therefore 2.69 and 2.92 respectively.
Zinc crystallizes in the well known h.c. packing, space group $P 6_{3} / m m c$ (No. 194) with two atoms per unit cell in the special positions $0,0,0$ and $\frac{2}{3}, \frac{1}{3}, \frac{1}{2}$.
The intensities of all reflexions in one hemisphere with $\sin \theta / \lambda<0.617 \AA^{-1}$ were measured with $\mathrm{Cu} K \alpha$ radiation on a Siemens AED four-circle diffractometer with graphite monochromator. The reflexions were measured by the five-point method, where the integrated intensity I_{m} is given by

$$
I_{m}=\left(I_{1}+I_{3}+I_{5}\right) / 2-\left(I_{2}+I_{4}\right),
$$

where I_{1} is the scan from peak maximum to the left end of the scan range, I_{3} is the scan from the left end to the right end of the scan range, I_{5} is the scan from the right end of the scan range to peak maximum and I_{2} and I_{4} are stationary registrations of background. Each reflexion was measured five times; the mean value of these five measurements was used in further calculations. Twenty of the 99 reflexions are symmetrically independent.
The unit-cell dimensions were estimated by least-
squares analysis using the reflexion positions for both $\mathrm{Cu} K \alpha_{1}(\lambda=1 \cdot 54433 \AA)$ and $\mathrm{Cu} K \alpha_{2}(\lambda=1 \cdot 54051 \AA)$ radiation: $a=b=2 \cdot 6659 \pm 0.0001, c=4 \cdot 9403 \pm 0.0002$ \AA, compared with values obtained by Lynch \& Drickamer (1965): $a=b=2.665, c=4.947 \AA$.
The sample was measured once more with a Hilger and Watts diffractometer with graphite monochromator. Mo $K \alpha$ was used to measure all reflexions in one sixth of the hemisphere with $\sin \theta / \lambda<0.809 \AA^{-1}$ in $\theta / 2 \theta$ scan. The Friedel pairs were also measured. The mean of the intensities of $h k l$ and $\overline{h k l}$ was used in later calculations. Of the 63 reflexions 36 are symmetrically independent. All intensities were corrected for absorption with the absorption factor A^{*} for spheres of Weber (1969). The Lp correction was applied with the formula given by Azaroff (1955) in the case where the scattering planes of the monochromator and the sample are mutually perpendicular.

Extinction correction: theoretical work

With the two least-squares programs $O R X F L S 3$ and LINEX 74 [both are modified versions of ORFLS by Busing, Martin \& Levy (1962)] it is possible to correct the intensity data for anisotropic secondary extinction. The program $O R X F L S 3$ uses the extinction formula given by Zachariasen (1967) and modified by Coppens \& Hamilton (1970). LINEX 74 incorporates the extinction treatment of Becker \& Coppens (1974, 1975). The extinction correction y is defined by

$$
I / y=I_{k}
$$

where I is the measured integrated intensity, corrected for absorption and Lp and I_{k} is the intensity in the kinematical approximation. The results for y for a mosaic crystal containing spherical domains of radius r with a Gaussian distribution for both the mosaic spread and the mean diffracting unit cross section inside the mosaic crystal (Zachariasen, 1967) are shown in Table 2 together with the results of Becker \& Coppens (1974). Various authors had pointed out shortcomings of Zachariasen's extinction correction and Becker \& Coppens therefore carefully reconsidered his calculations with both Gaussian and Lorentzian distributions for the mosaic spread and the mean diffracting unit cross section.

For unpolarized X-ray beams

$$
\begin{equation*}
y=\frac{y_{\perp}+y_{\|} \cos ^{2} 2 \theta}{1+\cos ^{2} 2 \theta} \tag{1}
\end{equation*}
$$

has to be used, where $y_{\perp}=y(P=1)$ and $y_{\| l}=y(P=$ $\cos ^{2} 2 \theta$). If the value of $Q_{0} \bar{T}_{\mu} g^{*}$ is smaller than 5 , the approximation

$$
\begin{equation*}
y=\frac{1}{\left[1+2 Q_{0} \bar{T}_{\mu} g^{*} \frac{1+\cos ^{4} 2 \theta}{1+\cos ^{2} 2 \theta}\right]^{1 / 2}} \tag{2}
\end{equation*}
$$

can be used for an unpolarized X-ray beam.

If the diffractometer is used with a monochromator, then y is given by

$$
\begin{equation*}
y=\frac{y_{\perp} \cos ^{2} 2 \theta_{M}+y_{\|} \cos ^{2} 2 \theta}{\cos ^{2} 2 \theta_{M}+\cos ^{2} 2 \theta} \tag{3}
\end{equation*}
$$

The parameters r and g in Table 2 are isotropic. Several models have been developed for r and g anisotropic. In type I crystals the mosaic spread is dependent on the direction in the crystal. Therefore Coppens \& Hamilton (1970) replaced g by $g(\mathbf{D})$, where \mathbf{D} is the unit vector normal to the diffraction plane. For type II crystals the mosaic blocks are no longer spheres but ellipsoids. Coppens \& Hamilton (1970) then replaced r by $r(\mathbf{N})$, where \mathbf{N} is the unit vector which lies in the diffraction plane and is perpendicular to the incident beam. Becker \& Coppens (1975) replaced r by $r(\mathbf{u})$, where \mathbf{u} is the unit vector along the incident beam. The models of anisotropy are collated in Table 3. In deriving y as defined in Table 2, it was assumed that absorption of X-rays in the crystal is small ($\mu \bar{T}<1$). Following Zachariasen (1968b), it is necessary to allow for the Borrmann effect when extinction is high and $\mu \bar{T}>1$. The Borrmann effect describes the fact that, if the Laue-Bragg equation is exactly or nearly satisfied, μ is no longer the linear absorption coefficient μ_{0} in the direction of Bragg reflexion, but

$$
\mu=\mu_{0} \pm K \mu_{H} \kappa_{K}
$$

with

$$
\mu_{H}=\left[\left(\sum_{j} \mu_{a j}\right) / V\right] \exp \left[2 \pi i\left(h x_{j}+k y_{j}+l z_{j}\right)\right] \exp (-M)
$$

for $z<1$:

$$
\begin{aligned}
& \kappa_{K}=z /[\pi(1- \\
&\left.\left.z^{2}\right)^{-1 / 2}\right] \\
& \times \ln \left[\left(1+\left(1-z^{2}\right)^{1 / 2}\right] /\left[1-\left(1-z^{2}\right)^{1 / 2}\right]\right.
\end{aligned}
$$

for $z \geq 1$:

$$
\begin{align*}
\kappa_{K} & =2 / \pi \\
z & =\left[2 r^{*} K|F|\left(e^{2} / m c^{2}\right) \lambda\right] /(V \sin 2 \theta) \tag{4}
\end{align*}
$$

$K=1$ for the normal and $K=|\cos 2 \theta|$ for the parallel component of polarization.

Using this μ in deriving the extinction correction, we get a weighted y :

$$
\begin{equation*}
y=\frac{A_{+1} y_{+1}+A_{-1} y_{-1}+K^{2}\left(A_{+K} y_{+K}+A_{-K} y_{-K}\right)}{2 A_{0}\left(1+K^{2}\right)} \tag{5}
\end{equation*}
$$

where A is the transmission factor $\left(A=1 / A^{*}\right)$ and the indices have the meaning: $0 \ldots \mu_{0} ; \pm 1 \ldots \mu_{0} \pm u_{H} \kappa_{1}$; $\pm K \ldots \mu_{0} \pm K \mu_{H} \kappa_{K}$.

Table 2. Extinction correction for X-rays polarized perpendicular $(P=1)$ and parallel $\left(P=\cos ^{2} 2 \theta\right)$ to the scattering plane
The symbols used are defined in the Appendix.

$$
\begin{array}{ccc}
\begin{array}{c}
\text { Zachariasen (1967) } \\
\text { Gaussian distribution } \\
W_{G}(\Delta)=(2 g)^{1 / 2} \exp \left(-2 \pi g^{2} \Delta^{2}\right)
\end{array} & \begin{array}{c}
\text { Becker \& Coppens (1974) }
\end{array} \\
\begin{array}{c}
\text { Gaussian distribution }
\end{array} & \begin{array}{c}
\text { Lorentzian distribution }
\end{array} \\
y=(1+2 x)^{-1 / 2} & y=\left[1+2 \cdot 12 x+\frac{A(\theta) x^{2}}{1+B(\theta) x}\right]^{-1 / 2} & y=\left[1+2 x+\frac{A(\theta) x^{2}}{1+B(\theta) x}\right]^{-1 / 2} \\
x=Q_{0} P \bar{T}_{\mu} g^{*} ; \bar{T}_{\mu}=\left(1 / A^{*}\right)\left(\mathrm{d} A^{*} / \mathrm{d} \mu\right) & \\
g^{*}=(r / \lambda)\left[1+(r / \lambda g)^{2}\right]^{-1 / 2} & g^{*}=\frac{r \sin 2 \theta}{\lambda}\left[1+\frac{9}{8}\left(\frac{r \sin 2 \theta}{\lambda g}\right)^{2}\right]^{-1 / 2} & g^{*}=\frac{r \sin 2 \theta}{\lambda}\left(1+\frac{r \sin 2 \theta}{\lambda g}\right)^{-1}
\end{array}
$$

Type I: g small: Extinction depends on the mosaic spread parameter η only.
$g^{*}=g \quad g^{*} \simeq g \quad g^{*}=g$
Type II: g large: Extinction depends on mosaic block size only.

$$
g^{*}=r / \lambda \quad g^{*}=r \sin 2 \theta / \lambda \quad g^{*}=r \sin 2 \theta / \lambda
$$

Table 3. The models of anisotropy of η and r
$\mathbf{Z}, \mathbf{Y}, \mathbf{W}$ and \mathbf{E} are second-order tensors. r and λ in \AA, η in seconds.

Type I Coppens \& Hamilton (1970)
Gaussian
Lorentzian
$\eta(\mathbf{D})=\frac{1}{2 \pi^{1 / 2} g(\mathbf{D})}=\frac{58186}{\left(\mathbf{D}^{\prime} \mathbf{Z D}\right)^{1 / 2}}$
$\eta(\mathbf{D})=\frac{1}{2 \pi g(\mathbf{D})}=\frac{32830}{\left(\mathbf{D}^{\prime} \mathbf{Z D}\right)^{1 / 2}}$
Type II

Thornley \& Nelmes (1974)
$\eta(\mathbf{D})=\frac{\left(\mathbf{D}^{\prime} \mathbf{Z D}\right)^{1 / 2}}{2 \pi^{1 / 2}}=58186\left(\mathbf{D}^{\prime} \mathbf{Y D}\right)^{1 / 2}$
$\eta(\mathbf{D})=\frac{\left(\mathbf{D}^{\prime} \mathbf{Y D}\right)^{1 / 2}}{2 \pi}=32830\left(\mathbf{D}^{\prime} \mathbf{Y D}\right)^{1 / 2}$
Becker \& Coppens (1975)
$r(\mathbf{u})=10^{4} \lambda /\left(\mathbf{u}^{\prime} \mathbf{E u}\right)^{1 / 2}$

Extinction correction: calculation and results of this work

As input data for ORXFLS3 and LINEX 74 we used the atom form factors for Zn^{2+} of Cromer \& Mann (1968) and the values for anomalous dispersion for Zn of Cromer \& Libermann (1970). Because of the high symmetry of h.c.p. Zn the six temperature factors $\beta_{i j}$ are constrained (Peterse \& Palm, 1966):

$$
\beta_{11}=\beta_{22}, \beta_{12}=\beta_{11} / 2, \beta_{23}=\beta_{13}=0 .
$$

The refinement was first carried out with the scale factor K_{1} and the two independent temperature factors β_{11} and β_{33} varying. Then the isotropic extinction parameter was varied together with the scale factor and the temperature factors. At the end of the refinement by least-squares analysis the scale factor, the two temperature factors and the six extinction parameters for anisotropic extinction were refined simultaneously. The results for $w R$ for these three steps of refinement using ORXFLS 3 are $0.10,0.057$ and 0.030 respectively. Using the significance test of Hamilton (1965), we can therefore reject the hypothesis that extinction correction is isotropic on a significance level of $\alpha=$ 0.005 .

(a) The results of refinement with ORXFLS3

In ORXFLS 3 the formulae for y of Zachariasen (1967) (Table 2) together with formula (2) are used. Anisotropic extinction parameters can be refined on the basis of the models of anisotropy for type I (Gaussian only) and type II crystals of Coppens \& Hamilton (1970) (Table 3).*

Two modifications were made in ORXFLS3: Firstly we can either use the original ORXFLS3 formula for y for an unpolarized incident beam, or take into account the influence of the monochromator (equation 3). Secondly we can calculate y with or without considering the Borrmann effect. To calculate y including the Borrmann effect defined in (5), it is necessary to calculate for each $h k l$ the transmission factor A and the absorption-weighted mean path length \bar{T}_{μ} for each of the five different μ defined in (4). This is done with the help of two additional subroutines in ORXFLS3. In the first subroutine the five different μ values are calculated for each hkl with formula (4). With the second subroutine, in which the absorption factor table of Weber (1969) is incorporated, it is possible to calculate the five different values for A and $A^{*}\left(A=1 / A^{*}\right)$ and the five different \bar{T}_{μ} values with $\bar{T}_{\mu}=\left(1 / A^{*}\right)\left(\mathrm{d} A^{*} / \mathrm{d} \mu\right) . y$ and the derivatives of the structure factor with respect to the extinction parameters were modified in ORXFLS 3

The results of refinement with $O R X F L S 3$ are shown in the upper part of Table 4 for the $\mathrm{Cu} K \alpha$ measurement and in the upper part of Table 5 for the Mo K α

[^0]measurement. In the second column the number of the calculation is given. The third column in both tables indicates the type of extinction correction applied, type I or type II as defined by Zachariasen. The values for the refined tensor components $Z_{i j}, Y_{i j}$ for type I and $W_{i j}, E_{i j}$ for type II are tabulated in the fifth column. In the last two columns information is given as to whether the calculations were made including the Borrmann effect or not, and whether (2) or (3) was used to calculate y.

Effect of including the Borrmann effect

The Borrmann effect is important for perfectly grown single crystals with high absorption. It is generally considered that metals do not form perfectly grown single crystals. But for a thick Zn single crystal Merlini \& Pace (1965) measured the Borrmann effect for the 002 reflexion. This result and the fact that $\mu R_{s}>1$ for our Zn sample encouraged the author to include the Borrmann effect in extinction correction for the Zn sphere. Results of calculations which include the Borrmann effect are seen in Tables 4 and 5 in the third and fourth rows. The R values for least-squares analysis including the Borrmann effect are much higher than without the Borrmann effect for both Cu and Mo. It is therefore concluded that formula (5) does not adequately describe the extinction in the Zn sample.

Effect of polarization

The effect of using the extinction correction with the polarization of the X-ray beam taken into account is more pronounced for $\mathrm{Cu} K \alpha$ measurements than for Mo $K \alpha$ measurements. This is not surprising, because $\cos 2 \theta_{M}=0.89$ for Cu radiation for the Siemens AED and $\cos 2 \theta_{M}=0.98$ for Mo radiation for the Hilger and Watts diffractometer [for $\cos 2 \theta_{M}=1$ (3) is identical with (1) for an unpolarized incident beam]. In what follows calculations not including the Borrmann effect in Tables 4 and 5 are considered. It can be seen that neglect of polarization has small influence on the R value and on the thermal vibration amplitudes u_{a} and u_{c} (listed in the fourth column of the Tables 4 and 5), but is important for the results on the mosaic block size $r_{i i}$. [These principal axes $r_{i i}$ and the direction cosines with respect to the orthogonal system with axes parallel to $\mathbf{a}, \mathbf{a} \times \mathbf{c}$ and \mathbf{c} are given in the fifth column of Tables 4 and 5 together with the tensor components for calculations (5), (6), (16) and (17).] This implies that the use of the unmodified ORXFLS 3 version to correct intensity data measured with a diffractometer with monochromator will give erroneous extinction parameters.

Type I or type II - comparison of Mo and Cu data

In using the type I model in ORXFLS3 non-positive-definite values for the extinction parameters are obtained for both Cu and Mo.

For the type II model of anisotropy the results
Table 4. Cu data: results of refinement for different anisotropic extinction correction models

Table 5. Mo data: results of refinement for different anisotropic extinction correction models

Program used ORXFLS 3	$T_{i j}$: tensor components $Z_{i j}, W_{i j}, Y_{i j}$ and $E_{i j}$ respectively.													
	No.	Type	$\begin{aligned} & u_{a}\left(\times 10^{3}\right) \\ & u_{c}\left(\times 10^{3}\right) \end{aligned}$			T_{33}	T_{12}	T_{13}	T23	$\begin{gathered} R\left(\times 10^{3}\right) \\ w R\left(\times 10^{3}\right) \end{gathered}$	K_{1}	σ	$\begin{aligned} & \text { B.E.* } \\ & \text { yes } \end{aligned}$	Using(2) or (3) (2)
	12	I	$\begin{aligned} & 111(5) \\ & 174(5) \end{aligned}$	not positive-definite						$\begin{aligned} & 30 \\ & 41 \end{aligned}$	$\begin{array}{r} 63 \cdot 5 \\ \pm 3.1 \end{array}$	$3 \cdot 4$		
	13	I	$\begin{aligned} & 100(10) \\ & 162(1) \end{aligned}$	not positiv	efinite					$\begin{array}{r} 9 \\ 11 \end{array}$	$\begin{array}{r} 54.8 \\ \pm 0.4 \end{array}$	0.9	no	(2)
	14	II	$\begin{aligned} & 112(4) \\ & 173(4) \end{aligned}$	$\begin{array}{r} 0.72 \\ \pm 0.30 \end{array}$	$\begin{array}{r} 0.56 \\ \pm 0.25 \end{array}$	$\begin{array}{r} 1.30 \\ \pm 0.57 \end{array}$	$\begin{aligned} & -0.49 \\ & \pm 0.23 \end{aligned}$	$\begin{array}{r} 0.13 \\ \pm 0.14 \end{array}$	$\begin{aligned} & -0.05 \\ & \pm 0.13 \end{aligned}$	$\begin{aligned} & 30 \\ & 36 \end{aligned}$	$\begin{array}{r} 63 \cdot 9 \\ \pm 2 \cdot 9 \end{array}$	$3 \cdot 0$	yes	(2)
	15	II	$\begin{aligned} & 111 \text { (4) } \\ & 174 \text { (5) } \end{aligned}$	$\begin{array}{r} 0.74 \\ \pm 0.30 \end{array}$	$\begin{array}{r} 0.56 \\ \pm 0.29 \end{array}$	$\begin{array}{r} 1.44 \\ \pm 0.75 \end{array}$	$\begin{aligned} & -0.49 \\ & \pm 0.28 \end{aligned}$	$\begin{array}{r} 0 \cdot 13 \\ \pm 0 \cdot 19 \end{array}$	$\begin{aligned} & -0.22 \\ & \pm 0.21 \end{aligned}$	$\begin{aligned} & 36 \\ & 44 \end{aligned}$	$\begin{array}{r} 64 \cdot 4 \\ \pm 3 \cdot 4 \end{array}$	$3 \cdot 6$	yes	(3)
	16	II	$\begin{aligned} & 101 \text { (1) } \\ & 163 \text { (1) } \end{aligned}$	$\begin{array}{r} 9.66 \\ \pm 1.31 \end{array}$	$\begin{array}{r} 10.0 \\ \pm 1.2 \end{array}$	$\begin{array}{r} 84.4 \\ \pm 9.5 \end{array}$	$\begin{aligned} & -1 \cdot 4 \\ & \pm 1.3 \end{aligned}$	$\begin{array}{r} 1 \cdot 0 \\ +2 \cdot 1 \end{array}$	$\begin{aligned} & -8 \cdot 1 \\ & \pm 2.5 \end{aligned}$	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	$\begin{array}{r} 55 \cdot 2 \\ \pm 0 \cdot 3 \end{array}$	0.7	no	(2)
				$\begin{aligned} & 2.5(2) \\ & 2.2(2) \\ & 0.8(1) \end{aligned}$	$\begin{array}{r} -0.64 \\ 0.77 \\ -0.02 \end{array}$	$\begin{array}{r} 0.77 \\ 0.63 \\ -0.11 \end{array}$	$\begin{aligned} & 0.07 \dagger \\ & 0.08 \\ & 0.99 \end{aligned}$							
	17	II	$\begin{aligned} & 101 \text { (1) } \\ & 162 \text { (1) } \end{aligned}$	$\begin{array}{r} 11.0 \\ \pm 1.4 \end{array}$	$\begin{array}{r} 11 \cdot 3 \\ \pm 1 \cdot 2 \end{array}$	$\begin{array}{r} 94 \cdot 4 \\ \pm 10.1 \end{array}$	$\begin{aligned} & -2 \cdot 1 \\ & \pm 1 \cdot 3 \end{aligned}$	$\begin{array}{r} 1 \cdot 4 \\ \pm 2 \cdot 1 \end{array}$	$\begin{aligned} & -8.6 \\ & \pm 2.5 \end{aligned}$	$\begin{aligned} & 6 \\ & 8 \end{aligned}$	$\begin{array}{r} 55.1 \\ \pm 0.3 \end{array}$	0.7	no	(3)
				$\begin{aligned} & 2.4(2) \\ & 2.0(2) \\ & 0.7(1) \end{aligned}$	$\begin{array}{r} -0.65 \\ 0.75 \\ -0.02 \end{array}$	$\begin{aligned} & 0.75 \\ & 0.64 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.07 \dagger \\ & 0.08 \\ & 0.99 \end{aligned}$							
$\begin{aligned} & \text { Program } \\ & \text { used } \\ & \text { LINEX } 74 \end{aligned}$	No.	Type	$\begin{aligned} & u_{a}\left(\times 10^{3}\right) \\ & u_{c}\left(\times 10^{3}\right) \end{aligned}$	T_{11}	T_{22}	T_{33}	T_{12}	T_{13}	T_{23}	$\underset{w R\left(\times 10^{3}\right)}{R\left(\times 10^{3}\right)}$	K_{1}	σ	Distribution Gaussian	Model \ddagger CH
	18								-13	8	53.7	$0 \cdot 8$	Gaussian	TN
	19	I	$\begin{array}{r} 96 \text { (1) } \\ 159 \text { (1) } \end{array}$	$\begin{array}{r} 216 \cdot 8 \\ \pm 46 \cdot 0 \end{array}$	$\begin{array}{r} 401 \cdot 4 \\ \pm 77 \cdot 2 \end{array}$	$\begin{array}{r} 24.8 \\ \pm 1 \cdot 3 \end{array}$	$\begin{array}{r} -143 \\ \pm 58 \end{array}$	± 10	\pm	10	± 0.2		Gaussian	
	20	I	not conv										Lorentzian	CH
	21	I	$\begin{array}{r} 98 \text { (1) } \\ 161 \text { (1) } \end{array}$	$\begin{array}{r} 77.4 \\ \pm 13.6 \end{array}$	$\begin{array}{r} 157.4 \\ \pm 28.8 \end{array}$	$\begin{array}{r} 11 \cdot 17 \\ \pm 0.40 \end{array}$	$\begin{gathered} -87.4 \\ \pm 19.5 \end{gathered}$	$\begin{aligned} & -6 \cdot 8 \\ & \pm 3.5 \end{aligned}$	$\begin{aligned} & -4 \cdot 1 \\ & \pm 5 \cdot 3 \end{aligned}$	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	$\begin{array}{r} 54 \cdot 9 \\ \pm 0 \cdot 2 \end{array}$	$0 \cdot 6$	Lorentzian	TN
	22	II	$\begin{array}{r} 96 \text { (3) } \\ 161 \text { (1) } \end{array}$	not positive-definite						$\begin{aligned} & 14 \\ & 19 \end{aligned}$	$\begin{array}{r} 54.7 \\ \pm 0.7 \end{array}$	1.6	Gaussian	-
				* With or without inclusion of the Borrmann effect. \dagger Principal axes and direction cosines. $a \times 10^{3}=r_{i i}$ in \AA. \ddagger Model of anisotropic extinction used: CH - Coppens \& Hamilton; TN - Thornley \& Nelmes.										

obtained in refining all six extinction parameters without constraints show that the ellipsoids describing the mean shape of the mosaic blocks almost take on the symmetry of the crystal lattice (see $r_{i i}$ and the direction cosines in Tables 4 and 5). The ellipsoid describing the anisotropy of the block size for calculation (6) in Table 4 is iliustrated in Fig. 1(a) and (b), drawn by the program for illustration of the thermal vibration ellipsoids, ORTEP by Johnson (1965). The other ellipsoids for Cu and Mo measurements have similar shapes and orientations, but different values for the lengths of the principal axes.

For all type II model calculations the principal axes of the mean domain block ellipsoids in the basal plane, r_{11} and r_{22}, are nearly equal in length and three to four times larger than r_{33} in the direction of the c axis, indicating that the atoms prefer to build up the basal plane more rapidly than the lattice in the c direction.

Zachariasen (1968a) pointed out that for mosaic crystals with spherical domain blocks and of intermediate type it is possible to calculate the quantities r and g, characteristic for the crystal specimen, if measurements are made with two different wavelengths. For the intermediate mosaic crystal type Zachariasen's (1968a) result is:

$$
\begin{aligned}
& r=r_{\mathrm{Mo}}^{*} r_{\mathrm{Cu}}^{*}\left[\left(\lambda_{\mathrm{Cu}}^{2}-\lambda_{\mathrm{Mo}}^{2}\right) /\left(\lambda_{\mathrm{Cu}}^{2} r_{\mathrm{Mo}}^{* 2}-\lambda_{\mathrm{Mo}}^{2} r_{\mathrm{Cu}}^{* 2}\right)\right]^{1 / 2} \\
& g=\left(r_{\mathrm{Cu}}^{*} r_{\mathrm{Mo}}^{*}\right) /\left(\lambda_{\mathrm{Cu}} \lambda_{\mathrm{Mo}}\right) \cdot\left[\left(\lambda_{\mathrm{Cu}}^{2}-\lambda_{\mathrm{Mo}}^{2}\right) /\left(r_{\mathrm{Cu}}^{* 2}-r_{\mathrm{Mo}}^{* 2}\right)\right]^{1 / 2}
\end{aligned}
$$

Fig. 1. Representation ellipsoid for mosaic block size r (arbitrary units). Cu data: calculation (6) in Table 4. (a) Axes along [100] and [120] of the hexagonal lattice. (b) Axes along [100] and [001] of the hexagonal lattice.
where

$$
r^{*}=r\left(1+(r / \lambda g)^{2}\right)^{-1 / 2}
$$

It is seen that the ratio $r_{\mathrm{Mo}}^{*} / r_{\mathrm{Cu}}^{*}$ must lie between the theoretical limits of $\lambda_{\mathrm{Mo}} / \lambda_{\mathrm{Cu}}=0.46$ and unity. For type I crystals it follows, that with $r_{\mathrm{Cu}}^{*}=\lambda_{\mathrm{Cu}} g$ and $r_{\mathrm{Mo}}^{*}=$ $\lambda_{\mathrm{Mo}} g, r_{\mathrm{Cu}}^{*} / r_{\mathrm{Mo}}^{*}=\lambda_{\mathrm{Cu}} / \lambda_{\mathrm{Mo}}, r$ cannot be determined and $g=r^{*} / \lambda$.

For type II crystals $r_{\mathrm{Mo}}^{*}=r$ and $r_{\mathrm{Cu}}^{*}=r$ and therefore $r_{\mathrm{Mo}}^{*}=r_{\mathrm{Cu}}^{*}$. Therefore g cannot be determined. An attempt to use Zachariasen's formulae was made in the directions of the a and c axes of the extinction ellipsoid using the results for $r_{i i}$ from the calculations (6) and (17) in Tables 4 and 5. For type II crystals, (in calculating r^{*} in this example it was assumed that the crystal is of type II) $r_{\mathrm{Mo}_{0}}^{*}$ should equal r_{Cu}^{*}. Neither for the a direction nor for the c direction is this statement true.

If we assume that we have a crystal of intermediate type, then $r_{\mathrm{Mo}}^{*} / r_{\mathrm{Cu}}^{*}$ must lie between 0.46 and unity and r and g can be calculated. However, this condition is not fulfilled, neither for the a direction $\left(r_{\mathrm{M} 0,{ }_{*}, ~}^{*} / r_{\mathrm{C}, a, a}^{*} \sim\right.$ 2200/7450~0.30) nor for the c direction ($r_{\mathrm{Mo}, c}^{*} / r_{\mathrm{Cu}, c}^{*} \sim$ $700 / 1800 \sim 0 \cdot 39$).

Because of these problems it was felt that the extinction correction in $O R X F L S 3$ is unsatisfactory for the Zn sample, although modifications have been made to include the Borrmann effect and the polarization of the incident beam. The intensity data were therefore refined once again, with the least-squares program LINEX 74.

(b) The results of refinement with LINEX 74

In LINEX 74 the formulae for y of Becker \& Coppens (1974) (Table 2) together with formula (1) are used. All four models for anisotropy given in Table 3 for type I crystals can be refined. For type II crystals the tensor components $E_{i j}$ defined by Becker \& Coppens (1975) (Table 3) are used. The tensor components are given in a system with axes parallel to the real crystal axes.

The results of refinement for type I and type II models with LINEX 74 are shown in the second parts of Tables 4 and 5 for Cu data and Mo data respectively.

From Tables 4 and 5 the following conclusions can be drawn. Lower R values are obtained with LINEX 74 than with $O R X F L S 3$, especially for Cu data. The $Y(o b s)-Y(c a l)$ lists calculated with $L I N E X 74$ show better agreement than those of $O R X F L S 3$, which show systematic disagreement for Y values with small $\sin \theta / \lambda$. Because the Mo data do not yield positivedefinite parameters for type II and because the R value for type II is higher than that of the best fitted type I model for Cu data, it can be concluded that the extinction is dominated by mosaic spread in the Zn sample.

With the Thornley-Nelmes anisotropy model better agreement was obtained than with the CoppensHamilton's model, for which the LSQ was divergent
in the case of Mo and leads to non-positive-definite parameters in the case of Cu data, if a Gaussian distribution is assumed. The Lorentzian distribution seems to fit the data better than the Gaussian distribution for both Mo and Cu . These results are in agreement with the general conclusions of Becker \& Coppens (1975) and Thornley \& Nelmes (1974). The best fit with LINEX 74 was obtained for the type I model, assuming Lorentzian distribution for the mosaic spread and the Thornley \& Nelmes (1974) model for anisotropy. The Y (cal)-Y(obs) lists for this fit are given in the Table $7(a)$ for the Cu data and $7(b)$ for the Mo data, showing good agreement between observed and calculated structure factors. \dagger

The root-mean-square displacement of $\mathbf{Z n}$

With

$$
u_{a}=\left(\beta_{11} / 2 \pi^{2} a_{1}^{* 2}\right)^{1 / 2} \text { and } u_{c}=\left(\beta_{33} / 2 \pi^{2} a_{3}^{*}\right)^{1 / 2}
$$

the root-mean-square displacements in directions a and \mathbf{c} of the h.c.p. lattice were calculated. The values are tabulated in the fourth columns of Tables 4 and 5 , for the different anisotropic extinction models used. In Table 6 the values of u_{a}, u_{c} and R for the best fit (LINEX 74, type I, Lorentzian distribution, Thornley \& Nelmes) are collected together with the values for the calculations with isotropic extinction and those without extinction taken into account.

Table 6. Comparison of the root-mean-square displacement for calculations with anisotropic and isotropic extinction and without extinction

All values are multiplied by a factor of 10^{3}.
Without extinction With isotropic With anisotropic correction extinction correction extinction correction $\begin{array}{lllllllll}R & u_{a}(\AA) & u_{c}(\AA) & R & u_{a}(\AA) & u_{c}(\AA) & R & u_{a}(\AA) & u_{c}(\AA)\end{array}$
$\begin{array}{lll}\mathrm{Cu} \quad 82 & \text { Non-positive- } 49104(2) & 143 \text { (2) } 15102 \text { (6) } 161 \text { (4) }\end{array}$ definite
Mo $6460(30) 130(30) 26101(1) 157(1) 798(1) 161(1)$

From Tables 4, 5, 6 and 7 the following conclusions can be drawn:

1. Neglect of the extinction correction results in low values for u_{a} and u_{c} for the Mo data, in accordance with the statement made in the Introduction. For Cu data, where the extinction is more severe, non-positive-definite temperature factors result. The Y (obs)- Y (cal) lists in Table 7 show high disagreement between measured and calculated intensities, resulting in a high R value.
\dagger Table 7 has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32540 (5 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.
2. The results for u_{a} and u_{c}, when an anisotropic extinction correction is made, are in good agreement with those of Skelton \& Katz (Table 1), showing that if extinction correction is properly used it is possible to get significant temperature factors with the help of least-squares analysis.
3. If the calculations including the Borrmann effect and those which result in non-positive-definite extinction parameters are ignored, Tables 4 and 5 show that the results for u_{a} and u_{c} are nearly independent of the anisotropic extinction model used.

APPENDIX

 Glossary of symbols```
A
A* the absorption factor
A(0),B(0) least-squares-fitted coefficients occurring in
 the expression for y (Becker & Coppens,
 1974)
a,b,c unit-cell dimensions
a
D unit vector normal to the diffraction plane
E second-order tensor defined in Table 3
e}\mp@subsup{e}{}{2}/m\mp@subsup{c}{}{2}\quad\mathrm{ electron radius
exp (-M) temperature factor
F structure factor
f
g}\quad\mathrm{ width parameter of the mosaic distribution
g* extinction parameter defined in Table 2
h reciprocal vector
hkl Miller indices
I
Im measured integrated intensity
Ik}\quad\mathrm{ intensity in kinematical approach
K the coefficient of polarization: 1 for the
 parallel component of the X-ray electric
 field; |\operatorname{cos}20| for the perpendicular com-
 ponent of the X-ray electric field
K
N unit vector which lies in the diffraction
 plane and is perpendicular to the incident
 beam
No number of observations
Nv number of variables to be varied
P term describing the polarization of the X-
 ray electric field
Q 0 = =[(e2/mc'2)\mp@subsup{)}{}{2}\mp@subsup{F}{}{2}\mp@subsup{\lambda}{}{3}]/(\mp@subsup{V}{}{2}\operatorname{sin}20)
m mean radius of the spherical mosaic do-
 main blocks
 principal axes of the representation el-
 lipsoid for the mosaic block size
\mp@subsup{r}{j}{}
r* the jth atom
```



## References

Abrahams, S. C., Alexander, L. E., Furnas, T. C., Hamilton, W. C., Ladell, J., Okaya, Y., Young, R. A. \& Zalkin, A. (1967). Acta Cryst. 22, 1-6.

Abrahams, S. C., Hamilton, W. C. \& Mathieson, A. McL. (1970). Acta Cryst. A 26, 1-18.

Azaroff, L. (1955). Acta Cryst. 8, 701-704.
Becker, P. \& Coppens, P. (1974). Acta Cryst. A 30, 129-147.
Becker, P. \& Coppens, P. (1975). Acta Cryst. A 31, 417-425.
Brindley, M. S. (1936). Phil. Mag. 21, 790-808.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Tennessee.
Coppens, P. \& Hamilton, W. C. (1970). Acta Cryst. A 26, 71-83.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A 24, 321-342.
Guse, W. (1971). Über die Herstellung metallischer Teilchen im Grössenbereich des Staubes. Thesis, Univ. Hamburg, BRD.
Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
Hamilton, W. C. \& Abrahams, S. C. (1970). Acta Cryst. A26, 18-24.
Jauncey, G. E. M. \& Bruce, W. A. (1936). Phys. Rev. 50, 408-412.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794, Oak Ridge National Laboratory, Tennessee.
Lynch, R. W. \& Drickamer, H. G. (1965). J. Phys. Chem. Solids, 26, 63-68.
Merlini, A. \& Pace, S. (1965). Nuovo Cim. 35, 377-390.
Peterse, W. J. A. M. \& Palm, J. H. (1966). Acta Cryst. 20, 147-150.
Ryba, E. (1960). Measurement of the Mean-Square Vibration Amplitude of Atoms in Metals by X-ray Techniques. Thesis, Iowa State Univ.
Skelton, E. \& Katz, L. (1968). Phys. Rev. 171, 801-808.
Thornley, F. R. \& Nelmes, R. J. (1974). Acta Cryst. A 30, 748-757.
Weber, K. (1969). Acta Cryst. B25, 1174-1178.
Willis, B. T. M. \& Pryor, A. W. (1975). Thermal Vibration in Crystallography, pp. 135-137. Cambridge Univ. Press.
Wollan, E. O. \& Harvey, G. G. (1937). Phys. Rev. 51, 1054-1061.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.
Zachariasen, W. H. (1968a). Acta Cryst. A 24, 212-216.
Zachariasen, W. H. (1968b). Acta Cryst. A 24, 421-424.
Zener, C. (1936). Phys. Rev. 49, 122-127.


[^0]:    * The tensor components are given in the orthogonal system with axes parallel to $\mathbf{a}, \mathbf{a} \times \mathbf{c}$ and $\mathbf{c}$.

