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X-ray Measurement of the Root-Mean-Square Displacement of Atoms in Zinc Single Crystals. 
A Case of High Anisotropic Extinction 
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The thermal parameters of Zn have been refined by the use of Bragg reflexions measured with Mo Ke 
and Cu Ke radiation for one temperature only. Several models of the anisotropic extinction correction 
have been examined. It is shown that the use of the extinction correction strongly influences the values 
of the thermal parameters. These parameters are however only slightly affected by the choice of extinc- 
tion correction model. The programs LINEX 74 and ORXFLS3 were used for refinement, the latter in a 
version modified by the author. The best fit was obtained by using the LINEX 74 type I model with a 
Lorentzian distribution of the mosaic spread and the Thornley-Nelmes model for the ellipsoid of the 
anisotropic mosaic spread. The result for the root-mean-square displacement was u, = 0-098 _ 0-001 A 
(Mo Ke radiation), Ua=0"102_0"006 A (Cu Ke radiation) in the a direction of the lattice and uc=0-161 __+ 
0.004 .~, (for both radiations) in the c direction. These results are in good agreement with those of Skelton 
& Katz [Phys. Rev. (1968), 171, 801-808-], measured in a temperature range from 4-85 to 600 K. 

Introduction 

During the last decade the validity of the temperature 
factors flij calculated from X-ray Bragg intensity 
measurements on single crystals with least-squares 
routines has been questioned. To obtain an answer 
about the quality of these temperature factors two 
projects were started: (a) The American Crystallo- 
graphic Association asked seven institutes to measure 
the highly symmetric CaF2 single crystal. Each insti- 
tute in turn received the same CaF2 crystal for meas- 
urement (Abrahams et al., 1967). (b) The International 
Union of Crystallography asked 16 different institutes 
to measure one of 16 different D-(+)-tartaric acid 
single crystals (Abrahams, Hamilton & Mathieson, 
1970; Hamilton & Abrahams, 1970). These two pro- 
jects and the results of comparing measured and cal- 
culated temperature factors of Ni (Bx_ray=0"37 A 2, 
Bneutron=0"43 A 2, Btheor.:0"38 A 2) and A1 (Bx_ray: 
0"85 A 2, Bneutron =0"89 A 2, Btheor. =0"87 A 2) (Willis & 
Pryor, 1975, and references cited therein) leads to the 
following conclusion: In the case of low symmetrical 
single crystals built up of light atoms [-project (b)-], 
there is striking disagreement for the fli~ between the 
results given by different authors. In the worst case 
in project (b) the temperature factors disagree by a 
factor of 10. In the case of highly symmetrical sub- 
stances [-project (a) and values for Ni and A1-], built 
up of heavy atoms in special positions, for which the 
six temperature factors reduce to one or two inde- 
pendent parameters, there is satisfactory agreement 
between different measurements and between meas- 
ured and calculated temperature factors. These results 
encouraged the author to estimate the temperature 
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factors of Zn using the intensities measured in Bragg 
positions of a Zn single crystal for one temperature 
only. 

Temperature factors calculated by least-squares 
analysis are strongly dependent on whether the ab- 
sorption correction, the extinction correction and the 
correction for TDS are properly applied. Ignoring one, 
two or all of these corrections leads to an under- 
estimate of temperature factors. In this investigation 
absorption correction was used and the extinction 
was studied extensively; the TDS correction was, how- 
ever, not made. 

Previous work on Zn root-mean-square displacement 

Previous work is collated in Table 1. With the help 
of calculated values for ua and uc Brindley (1936) cor- 
rected the measured form factor of the Zn atom and 
compared the result with calculated form-factor values. 
The comparison led him to the conclusion that his 
calculated values for u, and uc must be too small. In 
subsequent papers, by Jauncey & Bruce (1936) and 
Wollan & Harvey (1937), larger values for u, and uc 
were estimated (Table 1). The relatively small values 
found by Ryba (1960) may be because he used a large 
single crystal (10 x 25 x 1.5 mm) and did not correct 
his intensities for extinction, particularly as the mosaic 
structure (which is irreversibly temperature dependent) 
governs the extinction correction. 

Experimental 

A sphere of Zn single crystal (99.9999% Zn), obtained 
by the extrusion of molten zinc through a narrow oil- 
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Table 1. Previous work on the root-mean-square 
displacement of Zn 

ua and uc are the mean atomic displacements in directions a and c 
of the crystal lattice. 

Method to estimate u, (A) uc (A) 
Author u, and uc T = 293 °K 

Zener (1936) Calculated 0"0636 0.0853 
Brindley (1936) Calculated 0.0791 0.1265 
Jauncey & Bruce From measurements of 0"093 0.172 
(1936) diffuse scattering on 

Zn single crystals 
Wollan & Harvey From measurements of 0.0913 0.153 
(1937) Bragg intensities on Zn 

powder sample for two 
temperatures 

Ryba (1960) From measurements of 0.077 0-128 
400 and 006 reflexions 
on Zn single crystal in 
the temperature range 
13°-400°C 

Skelton & Katz From measurements of 0-106 0.161 
(1968) 004, 006, 008, 300, 400, 

600 and 210 reflexions 
on Zn single crystals in 
the temperature range 
4.85°-600°K 

encased tube was supplied by Guse (1971). Oil and 
molten zinc are contained within a large glass column 
which has a temperature gradient from the top to the 
bottom. The extruded zinc solidifies into spherical 
droplets as they fall through the oil. Most of the 
spheres are single crystals, although under some con- 
ditions polycrystalline phases also develop. The mean 
radius Rs = 0"00680_+0.00018 cm of the Zn sample was 
obtained by measuring it ten times in various orienta- 
tions. The values of poRs obtained for Mo K~ and 
Cu Ke for this sphere are therefore 2.69 and 2.92 
respectively. 

Zinc crystallizes in the well known h.c. packing, 
space group P63/mmc (No. 194) with two atoms per 
unit cell in the special positions 0,0,0 and -~,2 3,1 21_. 

The intensities of all reflexions in one hemisphere 
with sin 0/2<0.617 A - t  were measured with Cu K~ 
radiation on a Siemens AED four-circle diffractometer 
with graphite monochromator.  The reflexions were 
measured by the five-point method, where the inte- 
grated intensity Im is given by 

Im=(It +13 +I5)/2 --(I2 + I 4 ) ,  

where I t  is the scan from peak maximum to the left 
end of the scan range, I3 is the scan from the left end 
to the right end of the scan range, I5 is the scan from 
the right end of the scan range to peak maximum 
and I2 and I4 are stationary registrations of back- 
ground. Each reflexion was measured five times; the 
mean value of these five measurements was used in 
further calculations. Twenty of the 99 reflexions are 
symmetrically independent. 

The unit-cell dimensions were estimated by least- 

squares analysis using the reflexion positions for both 
Cu Kat  (2= 1.54433 A) and Cu K ~  2 (2----= 1-54051 A) 
radiation: a = b = 2-6659 _+ 0-0001, c = 4-9403 ___ 0-0002 
A, compared with values obtained bYo Lynch & 
Drickamer (1965): a = b = 2.665, c = 4.947 A. 

The sample was measured once more with a Hilger 
and Watts diffractometer with graphite mono- 
chromator. Mo Kc~ was used to measure all reflexions 
in one sixth of the hemisphere with sin 0/2 < 0.809 A,- 1 
in 0/20 scan. The Friedel pairs were also measured. 
The mean of the intensities of hkl and hkl was used in 
later calculations. Of the 63 reflexions 36 are sym- 
metrically independent. All intensities were corrected 
for absorption with the absorption factor A* for 
spheres of Weber (1969). The Lp correction was ap- 
plied with the formula given by Azaroff (1955) in the 
case where the scattering planes of the monochro- 
mator and the sample are mutually perpendicular. 

Extinction correction: theoretical work 

With the two least-squares programs ORXFLS3 and 
LINEX 74 I-both are modified versions of ORFLS by 
Busing, Martin & Levy (1962)] it is possible to cor- 
rect the intensity data for anisotropic secondary ex- 
tinction. The program ORXFLS3 uses the extinction 
formula given by Zachariasen (1967) and modified by 
Coppens & Hamilton (1970). LINEX 74 incorporates 
the extinction treatment of Becker & Coppens (1974, 
1975). The extinction correction y is defined by 

I/y = lk 

where I is the measured integrated intensity, corrected 
for absorption and Lp and Ik is the intensity in the 
kinematical approximation. The results for y for a 
mosaic crystal containing spherical domains of radius 
r with a Gaussian distribution for both the mosaic 
spread and the mean diffracting unit cross section 
inside the mosaic crystal (Zachariasen, 1967) are shown 
in Table 2 together with the results of Becket & 
Coppens (1974). Various authors had pointed out 
shortcomings of Zachariasen's extinction correction 
and Becket & Coppens therefore carefully recon- 
sidered his calculations with both Gaussian and 
Lorentzian distributions for the mosaic spread and the 
mean diffracting unit cross section. 

For unpolarized X-ray beams 

Y±+Yll c°$2  20 (1) Y = 1 + cos 2 20 

has to be used, where y±=y(P=l)  and Yll =Y(P=  
cos 2 20). If the value of Qo ~g*  is smaller than 5, the 
approximation 

1 
Y= [ - 1 +COS 4 20]1/2 (2) 

1 + 2Q0 Tug* 1 + COS 2 2-0J 
i , , , _  

can be used for an unpolarized X-ray beam. 
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If the diffractometer is used with a monochromator,  
then y is given by 

Y± cos2 20M+Yll COS 2 20 
Y = COS 2 20M + COS 2 20 (3) 

The parameters r and g in Table 2 are isotropic. 
Several models have been developed for r and g 
anisotropic. In type I crystals the mosaic spread is 
dependent on the direction in the crystal. Therefore 
Coppens & Hamilton (1970) replaced g by g(D), where 
D is the unit vector normal to the diffraction plane. 
For type II crystals the mosaic blocks are no longer 
spheres but ellipsoids. Coppens & Hamilton (1970) 
then replaced r by r(N), where N is the unit vector 
which lies in the diffraction plane and is perpendicular 
to the incident beam. Becker & Coppens (1975) re- 
placed r by r(u), where u is the unit vector along the 
incident beam. The models of anisotropy are collated 
in Table 3. In deriving y as defined in Table 2, it was 
assumed that absorption of X-rays in the crystal is 
small (/~T<I). Following Zachariasen (1968b), it is 
necessary to allow for the Borrmann effect when ex- 
tinction is high and # T > I .  The Borrmann effect 
describes the fact that, if the Laue-Bragg equation is 
exactly or nearly satisfied, /~ is no longer the linear 
absorption coefficient #0 in the direction of Bragg 
reflexion, but 

!~ = lto + K#nx1¢ 

with 

#u = [(~. I~ai)/V] exp [2rci(hxj+ kyj+ Izi)] exp ( -  M); 
3 

for z < l "  
K K = Z/[~(1 -- 22) - 1/2] 

x In [(1 +(1 - Z2)1/2]/[1 --(1 - z 2 ) I / 2 ] ,  

for z > l "  

XK= 2/rC, 

z = [2r*KlFl(e2/mc2)2]/(V sin 20). (4) 

K = 1 for the normal and K = Icos 201 for the parallel 
component of polarization. 

Using this p in deriving the extinction correction, 
we get a weighted y: 

A+ lY+ a + A _  lY-  1 + K2(A+KY+K +A_KY_K) 
Y = 2Ao( 1 + K 2) (5) 

where A is the transmission factor (A = l/A*) and the 
indices have the meaning" 0.../~o; + 1.../~0__+UHX~; 
+ K...#o +-- K#ntCK. 

Table 2. Extinction correction for X-rays polarized perpendicular (P = 1) and parallel ( P =  C O S  2 20) 
to the scattering plane 

The symbols used are defined in the Appendix. 

Zachariasen (1967) Becker & Coppens (1974) 
Gaussian distribution Gaussian distribution Lorentzian distribution 

Wa(A ) = (2g) 1/2 exp ( - 2rcg2d 2) WL(A) = 2g/(1 + 4x2A 292) 

y = ( l + 2 x )  -1/2 y =  1+2.12x+ I+--~-X_J Y= l + 2 X +  l+B(O)x_] 

x=QoP T,g* ; T, =(l/A*) (dA*/d~) 

g,=(r /2)[ l+(r /2g)2]_l /2  g , =  r sin 20 f 2  1 +~ (r  sin 20~21-1/2 g , _  r sin 20 (1+  r sin 20~ -1 
\ 2g ] J 2 - - - ~ g  f 

Type I: g small: Extinction depends on the mosaic spread parameter r/only. 
g* = g g* ,~ g g* = g 

Type II: g large: Extinction depends on mosaic block size only. 
g*=r/2  g*= r sin 20/). g*= r sin 20/2 

Table 3. The models of anisotropy oft 1 and r 

Z, Y, W and E are second-order tensors, r and 2 in A, r/in seconds. 

Type I Coppens & Hamilton (1970)  Thornley & Nelmes (1974) 
1 58186 (D'ZD) 1/2 

Gaussian q(D)= 2nt/2g(D ) -(D,ZD)I/2 q(D) 2nl/2 -58186(D'YD) 1/2 

1 32830 (D'YD) 1/2 
Lorentzian t/(D) 2ng(D~ - (D'ZD) 1/2 r/(D)- 2------~- = 32830 (D'YD) 1/2 

Type II Coppens & Hamilton (1970) Becker & Coppens (1975) 
r(N) = 104,,1./(N'WN) 1/2 r(u) = 1042/(ll'Eu) 1/2 
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Extinction correction: calculation and results 
of this work 

As input data for ORXFLS 3 and L I N E X  74 we used 
the atom form factors for Zn a+ of Cromer & Mann 
(1968) and the values for anomalous dispersion for 
Zn of Cromer & Libermann (1970). Because of the 
high symmetry of h.c.p. Zn the six temperature factors 
flij are constrained (Peterse & Palm, 1966): 

/hi =/~,/~1~ =/~1 d2,/~3 =/~13 =0. 
The refinement was first carried out with the scale 
factor K x and the two independent temperature factors 
flat and fl33 varying. Then the isotropic extinction 
parameter was varied together with the scale factor 
and the temperature factors. At the end of the refine- 
ment by least-squares analysis the scale factor, the two 
temperature factors and the six extinction parameters 
for anisotropic extinction were refined simultaneously. 
The results for wR for these three steps of refinement 
using ORXFLS3 are 0.10, 0.057 and 0.030 respec- 
tively. Using the significance test of Hamilton (1965), 
we can therefore reject the hypothesis that extinction 
correction is isotropic on a significance level of ~= 
0.005. 

(a) The results of refinement with ORXFLS3 
In ORXFLS3 the formulae for y of Zachariasen 

(1967) (Table 2) together with formula (2) are used. 
Anisotropic extinction parameters can be refined on 
the basis of the models of anisotropy for type I 
(Gaussian only) and type II crystals of Coppens & 
Hamilton (1970) (Table 3).* 

Two modifications were made in ORXFLS3: 
Firstly we can either use the original ORXFLS3 
formula for y for an unpolarized incident beam, or take 
into account the influence of the monochromator 
(equation 3). Secondly we can calculate y with or with- 
out considering the Borrmann effect. To calculate y 
including the Borrmann effect defined in (5), it is 
necessary to calculate for each hkl the transmission 
factor A and the absorption-weighted mean path 
length T u for each of the five different # defined in (4). 
This is done with the help of two additional sub- 
routines in ORXFLS 3. In the first subroutine the five 
different p values are calculated for each hkl with 
formula (4). With the second subroutine, in which the 
absorption factor table of Weber (1969) is incor- 
porated, it is possible to calculate the five different 
values for A and A* (A = l/A*) and the five different 
T,  values with Tu=(1/A*)(dA*/d#). y and the deriv- 
atives of the structure factor with respect to the ex- 
tinction parameters were modified in ORXFLS 3 

The results of refinement with ORXFLS 3 are shown 
in the upper part of Table 4 for the Cu Ks measure- 
ment and in the upper part of Table 5 for the Mo Ks 

* The tensor components are given in the orthogonal system 
with axes parallel to a, a x e and e. 

measurement. In the second column the number of 
the calculation is given. The third column in both 
tables indicates the type of extinction correction ap- 
plied, type I or type II as defined by Zachariasen. 
The values for the refined tensor components Zii, Y~j 
for type I and W~j, Eij for type II are tabulated in the 
fifth column. In the last two columns information is 
given as to whether the calculations were made in- 
cluding the Borrmann effect or not, and whether (2) or 
(3) was used to calculate y. 

Effect of including the Borrmann effect 
The Borrmann effect is important for perfectly 

grown single crystals with high absorption. It is gen- 
erally considered that metals do not form perfectly 
grown single crystals. But for a thick Zn single crystal 
Merlini & Pace (1965) measured the Borrmann effect 
for the 002 reflexion. This result and the fact that 
#Rs> 1 for our Zn sample encouraged the author to 
include the Borrmann effect in extinction correction 
for the Zn sphere. Results of calculations which include 
the Borrmann effect are seen in Tables 4 and 5 in the 
third and fourth rows. The R values for least-squares 
analysis including the Borrmann effect are much 
higher than without the Borrmann effect for both Cu 
and Mo. It is therefore concluded that formula (5) 
does not adequately describe the extinction in the Zn 
sample. 

Effect of polarization 
The effect of using the extinction correction with the 

polarization of the X-ray beam taken into account is 
more pronounced for Cu Kc~ measurements than for 
Mo K~ measurements. This is not surprising, because 
cos 20M----0"89 for Cu radiation for the Siemens AED 
and cos 20M=0"98 for Mo radiation for the Hilger 
and Watts diffractometer [for cos 20M=l (3) is 
identical with (1) for an unpolarized incident beam]. 
In what follows calculations not including the Borr- 
mann effect in Tables 4 and 5 are considered. It can 
be seen that neglect of polarization has small in- 
fluence on the R value and on the thermal vibration 
amplitudes u, and Uc (listed in the fourth column of 
the Tables 4 and 5), but is important for the results 
on the mosaic block size r.. [These principal axes ru 
and the direction cosines with respect to the orthogonal 
system with axes parallel to a, a × c and c are given 
in the fifth column of Tables 4 and 5 together with 
the tensor components for calculations (5), (6), (16) 
and (17).] This implies that the use of the unmodified 
ORXFLS 3 version to correct intensity data measured 
with a diffractometer with monochromator will give 
erroneous extinction parameters. 

Type I or type II - comparison of Mo and Cu data 
In using the type I model in ORXFLS3 non- 

positive-definite values for the extinction parameters 
are obtained for both Cu and Mo. 

For the type II model of anisotropy the results 
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obtained in refining all six extinction parameters 
without constraints show that the ellipsoids describing 
the mean shape of the mosaic blocks almost take on 
the symmetry of the crystal lattice (see r ,  and the 
direction cosines in Tables 4 and 5). The ellipsoid 
describing the anisotropy of the block size for calcula- 
tion (6) in Table 4 is illustrated in Fig. l(a) and (b), 
drawn by the program for illustration of the thermal 
vibration ellipsoids, O R T E P  by Johnson (1965). The 
other ellipsoids for Cu and Mo measurements have 
similar shapes and orientations, but different values 
for the lengths of the principal axes• 

For all type II model calculations the principal axes 
of the mean domain block ellipsoids in the basal 
plane, rl 1 and r22 , are nearly equal in length and three 
to four times larger than r33 in the direction of the c 
axis, indicating that the atoms prefer to build up the 
basal plane more rapidly than the lattice in the c 
direction. 

Zachariasen (1968a) pointed out that for mosaic 
crystals with spherical domain blocks and of inter- 
mediate type it is possible to calculate the quantities 
r and g, characteristic for the crystal specimen, if 
measurements are made with two different wave- 
lengths. For the intermediate mosaic crystal type 
Zachariasen's (1968a) result is: 

* * Fa'~2 2 2 *2 2 *2 
r =  rMorcu L~Cu -- )~Mo)/()~curMo -- 2Morcu)] 1/2 

* * [(2Cu -- 2Mo)/(rcu -- rMo)] 1/2 g=(rcurMo)/(2Cu2Mo)" 2 2 *2 *2 

32o] 
6 

5 

3 

2 

1 

Doo'l 
[001] 0 i 2 (a) ~ ~ ~i 6 

3 

1 

= Doo] 
o i ~, § ~. ~ 6 

( b )  

Fig. 1. Representation ellipsoid for mosaic block size r (arbitrary 
units). Cu data: calculation (6) in Table 4. (a) Axes along [-100] 
and [,120] of the hexagonal lattice. (b) Axes along [100] and [001] 
of the hexagonal lattice. 

where 

r* = r(1 + (r/)Lg)2) - 1/2. 

It is seen that the ratio r~o/rcu must lie between the 
theoretical limits of 2Mo/2Cu = 0"46 and unity. For type 
I crystals it follows, that with rcu=2cug and rMo = 
2Mog, r*cu/r*Mo=2Cu/2Mo, r cannot be determined and 

g = r*/2. 
For .type * * II crystals rMo = r and rc, = r and therefore 

rMo=rcu. Therefore g cannot be determined. An 
attempt to use Zachariasen's formulae was made in 
the directions of the a and c axes of the extinction 
ellipsoid using the results for ru from the calculations 
(6) and (17) in Tables 4 and 5. For type II crystals, 
(in calculating r* in this example it was assumed that 
the crystal is of type II) r~o should equal rcu. Neither 
for the a direction nor for the c direction is this state- 
ment true. 

If we assume that we have a crystal of intermediate 
type, then r*Mo/rcu must lie between 0.46 and unity and 
r and g can be calculated. However, this condition is 
not fulfilled, neither for the a direction (rMo ,,a/rcu ,"~ 
2200/7450~0"30) nor for the c direction (rMo, Jrc , , c~  
700/1800~0.39). 

Because of these problems it was felt that the ex- 
tinction correction in O R X F L S 3  is unsatisfactory for 
the Zn sample, although modifications have been made 
to include the Borrmann effect and the polarization 
of the incident beam. The intensity data were therefore 
refined once again, with the least-squares program 
L I N E X 7 4 .  

(b) The results of  refinement with L I N E X  74 
In L I N E X 7 4  the formulae for y of Becker & 

Coppens (1974) (Table 2) together with formula (1) 
are used. All four models for anisotropy given in 
Table 3 for type I crystals can be refined. For type II 
crystals the tensor components E u defined by Becker & 
Coppens (1975) (Table 3) are used. The tensor com- 
ponents are given in a system with axes parallel to the 
real crystal axes. 

The results of refinement for type I and type II 
models with L I N E X  74 are shown in the second parts 
of Tables 4 and 5 for Cu data and Mo data respectively. 

From Tables 4 and 5 the following conclusions can 
be drawn. Lower R values are obtained with L I N E X  74 
than with O R X F L S 3 ,  especially for Cu data. The 
Y(obs)-Y(cal) lists calculated with L I N E X 7 4  show 
better agreement than those of O R X F L S  3, which show 
systematic disagreement for Y values with small 
sin 0/2. Because the Mo data do not yield positive- 
definite parameters for type II and because the R 
value for type II is higher than that of the best fitted 
type I model for Cu data, it can be concluded that 
the extinction is dominated by mosaic spread in the 
Zn sample. 

With the Thornley-Nelmes anisotropy model better 
agreement was obtained than with the Coppens- 
Hamilton's model, for which the LSQ was divergent 
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in the case of Mo and leads to non-positive-definite 
parameters in the case of Cu data, if a Gaussian dis- 
tribution is assumed. The Lorentzian distribution 
seems to fit the data better than the Gaussian distribu- 
tion for both Mo and Cu. These results are in agree- 
ment with the general conclusions of Becker & 
Coppens (1975) and Thornley & Nelmes (1974). The 
best fit with L I N E X 7 4  was obtained for the type I 
model, assuming Lorentzian distribution for the 
mosaic spread and the Thornley & Nelmes (1974) 
model for anisotropy. The Y(cal)-Y(obs) lists for this 
fit are given in the Table 7(a) for the Cu data and 7(b) 
for the Mo data, showing good agreement between 
observed and calculated structure factors.? 

2. The results for Ua and uc, when an anisotropic 
extinction correction is made, are in good agreement 
with those of Skelton & Katz (Table 1), showing that 
if extinction correction is properly used it is possible 
to get significant temperature factors with the help 
of least-squares analysis. 

3. If the calculations including the Borrmann effect 
and those which result in non-positive-definite extinc- 
tion parameters are ignored, Tables 4 and 5 show that 
the results for Ua and u~ are nearly independent of the 
anisotropic extinction model used. 

The root-mean-square displacement of Zn 

With 

Ua=(fltt/2rc2a] 2)l/2 and uc=(f133/2rcZa32)'/2 

the root-mean-square displacements in directions a 
and c of the h.c.p, lattice were calculated. The values 
are tabulated in the fourth columns of Tables 4 and 
5, for the different anisotropic extinction models used. 
In Table 6 the values of Ua, uc and R for the best fit 
(LINEX74,  type I, Lorentzian distribution, Thornley 
& Nelmes) are collected together with the values for 
the calculations with isotropic extinction and those 
without extinction taken into account. 

Table 6. Comparison of the root-mean-square 
displacement for calculations with anisotropic 
and isotropic extinction and without extinction 

All values are multiplied by a factor of 103. 

Without extinction With isotropic With anisotropic 
correction extinction correction extinction correction 

R Ua(A) uc(A) R Ua(A) Uc(A) R Ua(A) Uc(A) 
Cu 82 Non-positive- 49 104(2) 143(2) 15 102(6) 161 (4) 

definite 
Mo 64 60 (30) 130 (30) 26 101(1) 157 (1) 7 98(1) 161(1) 

A 
A* 
A(O),B(O) 

a, b, c 

ai 
D 
E 
e2/mc 2 

exp ( - M) 
F 

g 
g* 
h 
hkl 
I 

.Im 
lk 
K 

g l  
N From Tables 4, 5, 6 and 7 the following conclusions 

can be drawn: 
1. Neglect of the extinction correction results in 

low values for Ua and uc for the Mo data, in accordance No 
with the statement made in the Introduction. For Cu No 
data, where the extinction is more severe, non- P 
positive-definite temperature factors result. The 
Y(obs)-Y(cal) lists in Table 7 show high disagreement Qo 
between measured and calculated intensities, resulting r 
in a high R value. 

rii 
I" Table 7 has been deposited with the British Library Lending 

Division as Supplementary Publication No. SUP 32540 (5 pp.). r j  
Copies may be obtained through The Executive Secretary, Inter- 
national Union of Crystallography, 13 White Friars, Chester CH1 
1NZ, England. r* 

APPENDIX 

Glossary of symbols 

the transmission factor 
the absorption factor 
least-squares-fitted coefficients occurring in 
the expression for y (Becker & Coppens, 
1974) 
unit-cell dimensions 
reciprocal-lattice constants 
unit vector normal to the diffraction plane 
second-order tensor defined in Table 3 
electron radius 
temperature factor 
structure factor 
form factor of the jth atom 
width parameter of the mosaic distribution 
extinction parameter defined in Table 2 
reciprocal vector 
Miller indices 
measured integrated intensity corrected for 
absorption and Lp 
measured integrated intensity 
intensity in kinematical approach 
the coefficient of polarization: 1 for the 
parallel component of the X-ray electric 
field; Icos 201 for the perpendicular com- 
ponent of the X-ray electric field 
scale factor in least-squares analysis 
unit vector which lies in the diffraction 
plane and is perpendicular to the incident 
beam 
number of observations 
number of variables to be varied 
term describing the polarization of the X- 
ray electric field 
=[(e2/mc2)2F2,~3]/(V 2 sin 20) 
mean radius of the spherical mosaic do- 
main blocks 
principal axes of the representation el- 
lipsoid for the mosaic block size 
vector from the origin of the unit cell to 
the jth atom 
--r[1 +(r/2g)2] - ,/2 
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R 
Rs 
SIG 
T 
T 

~a, Uc 

V 
wR 

W 
X j, y j, Zj 

Y 
YlI,Y± 

Y(obs) 

Y(cal) 

Y 
Z 
(X 

AI 

q 
O, Om 

2 
/],Mo,/],Cu 
/to 

= El Y(obs)- Y(cal)l/E Y(obs) 
radius of the spherical Zn sample 
=(AI /2I / Im) .A*/ (K1.  ~/y) 
mean path length through the crystal 
absorption-weighted mean path length 
through the crystal 
unit vector parallel to the direction of the 
incident beam 
root-mean-square displacements in a and 
c directions of the lattice 
volume of the unit cell 
= {E(1/SIG). [ Y(obs)-  Y(cal)] 2 } 1/2 
+ [E(1/SIG). Y(obs)2] 1/2 
second-order tensor defined in Table 3 
positional parameters of the jth atom in 
the unit cell 
extinction correction 
extinction correction for the parallel or 
perpendicular component of the X-ray 
electric field 
= ] / I m Z * / ( g l  . Vy)  

= ~  J] exp (2rchu) exp ( - M )  
J 

second-order tensor defined in Table 3 
second-order tensor defined in Table 3 
significance level of Hamilton's R-ratio 
test 
anisotropic temperature factors 
error in Is, with the variance from counting 
statistics and systematic errors of the 
measurement [filter-factor error, discre- 
pancies in reference measurements (meas- 
ured several times during the measure- 
ment of the Bragg intensities)] taken into 
account 
mosaic spread parameter 
Bragg angle of the sample and mono- 
chromator respectively 
wavelength of the radiation 
wavelengths for Mo and Cu radiations 
linear absorption coefficient 
atomic absorption coefficient of the jth 
atom in the unit cell 
absorption coefficient defined in (4) 
E(1/SIG). [ Y(obs)-  Y(cal)]2/(No - N,,) 
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